Speech Recognition Methods Applied to Biomedical Signals Processing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099560" target="_blank" >RIV/68407700:21230/04:03099560 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Speech Recognition Methods Applied to Biomedical Signals Processing
Original language description
The paper focuses on processing of long biological signals used during monitoring procedures like in the case of portable Holter device for arrythmia analysis (ECG), intracranial pressure monitoring (ICP) in intensive care unit or overnight electroencephalogram monitoring (EEG) for sleep apnea detection. Two methods taken from speech processing are proposed: Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). The unsupervised analysis of ECG and ICP beats is carried out using hierarchical clustering approach. In case of EEG, first the estimation of sleep stages is performed and next the different breathing events are detected by HMM by means of Viterbi inference. We show that for the first two problems DTW outperforms HMM while in the third casethe HMM inference capability makes HMM suitable for sleep apnea diagnosis.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
A - Audiovisual production
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
0-7803-8439-3
Place of publication
Los Alamitos
Publisher/client name
—
Version
—
Carrier ID
neuvedeno