Morphology Analysis of Physiological Signals Using Hidden Markov Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099574" target="_blank" >RIV/68407700:21230/04:03099574 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Morphology Analysis of Physiological Signals Using Hidden Markov Models
Original language description
We describe a clustering algorithm based on continuous Hidden Markov Models (HMM) to automatically classify both electrocardiogram (ECG) and intracranial pressure (ICP) beats based on their morphology. The algorithm detects, classifies and labels each beat based on morphology. In order to avoid the numerical problems with classical Expectation-Maximization (EM) algorithm we apply a novel method of simulated annealing (SIM) for HMM optimization. We show that better results are achieved using simulated annealing approach.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
A - Audiovisual production
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
0-7695-2128-2
Place of publication
London
Publisher/client name
—
Version
—
Carrier ID
neuvedeno