Classification of Long-Term EEG Recordings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03102014" target="_blank" >RIV/68407700:21230/04:03102014 - isvavai.cz</a>
Alternative codes found
RIV/00064211:_____/05:#0000061
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Classification of Long-Term EEG Recordings
Original language description
Computer assisted processing of long-term EEG recordings is gaining a growing importance. To simplify the work of a physician, that must visually evaluate long recordings, we present a method for automatic processing of EEG based of learning classifier.This method supports the automatic search of long-term EEG recording and detection of graphoelements - signal parts with characteristic shape and defined diagnostic value. Traditional methods of detection show great variety of non-stationary EEG. The idea of this method is to break down the signal into stationary sections called segments using adaptive segmentation and create a set of normalized discriminative features are used for classification describe classes of unknown segments. The implementationof this method was experimentally verified on a real EEG with the diagnosis of epilepsy.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
D - Article in proceedings
CEP classification
FS - Medical facilities, apparatus and equipment
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/NF7511" target="_blank" >NF7511: Automatic EEG analysis during long-term monitoring in neurological ICU.</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Biological and Medical Data Analysis
ISBN
3-540-23964-2
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
322-332
Publisher name
Springer
Place of publication
Berlin
Event location
Barcelona
Event date
Nov 18, 2004
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—