Piron's and Bell's geometrical lemmas
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03103443" target="_blank" >RIV/68407700:21230/04:03103443 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Piron's and Bell's geometrical lemmas
Original language description
The famous Gleason's Theorem gives a characterization of measures on lattices of subspaces of Hilbert spaces. The attempts to simplify its proof lead to geometrical lemmas that possess also easy proofs of some consequences of Gleason's Theorem. We contribute to these results by solving two open problems formulated by Chevalier, Dvurečenskij and Svozil. Besides, our use of orthoideals provides a unified approach to finite and infinite measures.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F00%2F0331" target="_blank" >GA201/00/0331: Operator algebras, orthocomplemented structures, and non-commutative measure theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Volume of the periodical
43
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1587-1594
UT code for WoS article
—
EID of the result in the Scopus database
—