All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dye's Theorem and Gleason's Theorem for AW*-algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00229788" target="_blank" >RIV/68407700:21230/15:00229788 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2014.09.040" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2014.09.040</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2014.09.040" target="_blank" >10.1016/j.jmaa.2014.09.040</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dye's Theorem and Gleason's Theorem for AW*-algebras

  • Original language description

    We prove that any map between projection lattices of AW*-algebras A and B, where A has no Type I-2 direct summand, that preserves orthocomplementation and suprema of arbitrary elements, is a restriction of a normal Jordan *-homomorphism between A and B.This allows us to generalize Dye's Theorem from von Neumann algebras to AW*-algebras. We show that Mackey-Gleason-Bunce-Wright Theorem can be extended to homogeneous AW*-algebras of Type I. The interplay between Dye's Theorem and Gleason's Theorem is shown. As an application we prove that Jordan *-homomorphisms are commutatively determined. Another corollary says that Jordan parts of AW*-algebras can be reconstructed from posets of their abelian subalgebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    422

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    1103-1115

  • UT code for WoS article

    000344911800021

  • EID of the result in the Scopus database

    2-s2.0-84908191744