All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dye's theorem for tripotents in von Neumann algebras and JBW*-triples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355025" target="_blank" >RIV/68407700:21230/21:00355025 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s43037-021-00134-w" target="_blank" >https://doi.org/10.1007/s43037-021-00134-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s43037-021-00134-w" target="_blank" >10.1007/s43037-021-00134-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dye's theorem for tripotents in von Neumann algebras and JBW*-triples

  • Original language description

    We study morphisms of the generalized quantum logic of tripotents in JBW*-triples and von Neumann algebras. Especially, we establish a generalization of celebrated Dye's theorem on orthoisomorphisms between von Neumann lattices to this new context. We show the existence of a one-to-one correspondence between the following maps: (1) quantum logic morphisms between the posets of tripotents preserving reflection u -> -u (2) maps between triples that preserve tripotents and are real linear on sets of elements with bounded range tripotents. In a more general description we show that quantum logic morphisms on structure of tripotents are given by a family of Jordan *-homomorphisms on Peirce 2-subspaces. By examples we demonstrate optimality of the results. Besides we show that the set of partial isometrics with its partial order and orthogonality relation is a complete Jordan invariant for von Neumann algebras.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Banach Journal of Mathematical Analysis

  • ISSN

    2662-2033

  • e-ISSN

    1735-8787

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

    2-19

  • UT code for WoS article

    000652224100001

  • EID of the result in the Scopus database

    2-s2.0-85106306422