Finite tripotents and finite JBW*-triples
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420469" target="_blank" >RIV/00216208:11320/20:10420469 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/20:00346258
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.D5Dd4j1PG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.D5Dd4j1PG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2020.124217" target="_blank" >10.1016/j.jmaa.2020.124217</a>
Alternative languages
Result language
angličtina
Original language name
Finite tripotents and finite JBW*-triples
Original language description
We study two natural preorders on the set of tripotents in a JB*-triple defined in terms of their Peirce decomposition and weaker than the standard partial order. We further introduce and investigate the notion of finiteness for tripotents in JBW*-triples which is a natural generalization of finiteness for projections in von Neumann algebras. We analyze the preorders in detail using the standard representation of JBW*-triples. We also provide a refined version of this representation - in particular a decomposition of any JBW*-triple into its finite and properly infinite parts. Since a JBW*-algebra is finite if and only if the extreme points of its unit ball are just unitaries, our notion of finiteness differs from the concept of modularity widely used in Jordan structures so far. The exact relationship of these two notions is clarified in the last section. (C) 2020 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
490
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
65
Pages from-to
124217
UT code for WoS article
000535982700021
EID of the result in the Scopus database
2-s2.0-85084671673