Efficient Sampling in Relational Feature Spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03109208" target="_blank" >RIV/68407700:21230/05:03109208 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Efficient Sampling in Relational Feature Spaces
Original language description
State-of-the-art algorithms implementing the `extended transformation approach' to propositionalization use backtrack depth first search for the construction of relational features (first order atom conjunctions) complying to user's mode/type declarations and a few basic syntactic conditions. As such they incur a complexity factor exponential in the maximum allowed feature size. Here I present an alternative based on an efficient reduction of the feature construction problem on the propositional satisfiability (SAT) problem, such that the latter involves only Horn clauses and is therefore tractable: a model to a propositional Horn theory can be found without backtracking in time linear in the number of literals contained.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Inductive Logic Programming
ISBN
3-540-28177-0
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
397-413
Publisher name
Springer
Place of publication
Berlin
Event location
Bonn
Event date
Aug 10, 2005
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—