All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Construction of Relational Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03114946" target="_blank" >RIV/68407700:21230/05:03114946 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Construction of Relational Features

  • Original language description

    Devising algorithms for learning from multi-relational data is currently considered an important challenge. The wealth of traditional single-relational machine learning tools, on the other hand, calls for methods of `propositionalization', ie. Conversionof multi-relational data into single-relational representations. A major stream of propositionalization algorithms is based on the construction of truth-valued features (first-order logic atom conjunctions), which capture relational properties of data and play the role of binary attributes in the resulting single-table representation. Such algorithms typically use backtrack depth first search for the syntactic construction of features complying to user's mode/type declarations. As such they incur a complexity factor exponential in the maximum allowed feature size.

  • Czech name

    Není k dispozici

  • Czech description

    Není k dispozici

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    4th International Conference on Machine Learning and Applications - Proceedings

  • ISBN

    0-7695-2495-8

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    259-264

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Los Angeles, California

  • Event date

    Dec 15, 2005

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article