Relational Subgroup Discovery for Gene Expression Data Mining
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A03115158" target="_blank" >RIV/68407700:21230/05:03115158 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Relational Subgroup Discovery for Gene Expression Data Mining
Original language description
We propose a methodology for predictive classification from gene expression data, able to combine the robustness of high-dimensional statistical classification methods with the comprehensibility and interpretability of simple logic-based models. We firstconstruct a robust classifier combining contributions of a large number of gene expression values, and then search for compact summarizations of subgroups among genes associated in the classifier with a given class. The subgroups are described by meansof relational logic features extracted from publicly available gene annotations. The curse of dimensionality pertaining to the gene expression based classification problem due to the large number of attributes (genes) is turned into an advantage in the secondary subgroup discovery task, as here the original attributes become learning examples.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
A - Audiovisual production
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
Praha
Publisher/client name
—
Version
—
Carrier ID
neuvedeno