All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-label Image Segmentation via Max-sum Solver

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03135487" target="_blank" >RIV/68407700:21230/07:03135487 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-label Image Segmentation via Max-sum Solver

  • Original language description

    We formulate single-image multi-label segmentation into regions coherent in texture and color as a MAX-SUM problem for which efficient linear programming based solvers have recently appeared. By handling more than two labels, we go beyond widespread binary segmentation methods, e.g., MIN-CUT or normalized cut based approaches. We show that the MAX-SUM solver is a very powerful tool for obtaining the MAP estimate of a Markov random field (MRF). We build the MRF on superpixels to speed up the segmentationwhile preserving color and texture. We propose new quality functions for setting the MRF, exploiting priors from small representative image seeds, provided either manually or automatically. We show that the proposed automatic segmentation method outperforms previous techniques in terms of the Global Consistency Error evaluated on the Berkeley segmentation database.

  • Czech name

    Multi-label Image Segmentation via Max-sum Solver

  • Czech description

    We formulate single-image multi-label segmentation into regions coherent in texture and color as a MAX-SUM problem for which efficient linear programming based solvers have recently appeared. By handling more than two labels, we go beyond widespread binary segmentation methods, e.g., MIN-CUT or normalized cut based approaches. We show that the MAX-SUM solver is a very powerful tool for obtaining the MAP estimate of a Markov random field (MRF). We build the MRF on superpixels to speed up the segmentationwhile preserving color and texture. We propose new quality functions for setting the MRF, exploiting priors from small representative image seeds, provided either manually or automatically. We show that the proposed automatic segmentation method outperforms previous techniques in terms of the Global Consistency Error evaluated on the Berkeley segmentation database.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2007: Proceedings of the Computer Vision and Pattern Recognition conference

  • ISBN

    1-4244-1180-7

  • ISSN

    1053-587X

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Minneapolis

  • Event date

    Jun 18, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article