Hierarchical Q ( ) Learning Intelligent Agents in an Artificial Life Domain
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A00165605" target="_blank" >RIV/68407700:21230/08:00165605 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
čeština
Original language name
Hierarchické Q( ) učení inteligentních agentů v prostředí umělého života
Original language description
Motivací tohoto výzkumu je ověření možnosti spojit rigorózní metody posilovaného učení a teorie řízení s behaviorálním (etologickým) přístupem k agentním technologiím. Výsledkem je architektura inteligentního autonomního agenta, který funguje v prostředích umělého života. Agent provádí od reaktivních chování (např. prchání a požívání potravy), přes jednoduché cílené chování (např. hledání zdrojů vody), až po komplexní plánování. Komplexním plánováním může být stavba přístřešku, průchod bludištěm s překážkami a hlavolamy a pod. Výsledné chování vzniká emergencí všech chování, která jsou volena na základě aktuálních priorit a motivací. Agent kontinuálně optimalizuje své chování za účelem zvýšení pravděpodobnosti přežití - optimalizačním kritériem je vzdálenost vnitřního stavu agenta od ideálních hodnot. Základními komponentami agenta jsou fyziologický systém, a kontroler. Fyziologický systém reprezentuje agentův vnitřní stav a jeho dynamiku.
Czech name
Hierarchické Q( ) učení inteligentních agentů v prostředí umělého života
Czech description
Motivací tohoto výzkumu je ověření možnosti spojit rigorózní metody posilovaného učení a teorie řízení s behaviorálním (etologickým) přístupem k agentním technologiím. Výsledkem je architektura inteligentního autonomního agenta, který funguje v prostředích umělého života. Agent provádí od reaktivních chování (např. prchání a požívání potravy), přes jednoduché cílené chování (např. hledání zdrojů vody), až po komplexní plánování. Komplexním plánováním může být stavba přístřešku, průchod bludištěm s překážkami a hlavolamy a pod. Výsledné chování vzniká emergencí všech chování, která jsou volena na základě aktuálních priorit a motivací. Agent kontinuálně optimalizuje své chování za účelem zvýšení pravděpodobnosti přežití - optimalizačním kritériem je vzdálenost vnitřního stavu agenta od ideálních hodnot. Základními komponentami agenta jsou fyziologický systém, a kontroler. Fyziologický systém reprezentuje agentův vnitřní stav a jeho dynamiku.
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Kognice a umělý život VIII.
ISBN
978-80-7248-462-1
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Slezská univerzita
Place of publication
Opava
Event location
Praha
Event date
May 26, 2008
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—