All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03136549" target="_blank" >RIV/68407700:21230/08:03136549 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors

  • Original language description

    Sequential data represent an important source of potentially new medical knowledge. However, this type of data is rarely provided in a format suitable for immediate application of conventional mining algorithms. This paper summarizes and compares three different sequential mining approaches, based respectively on windowing, episode rules and inductive logic programming. Windowing is one of the essential methods of data preprocessing, episode rules represent general sequential mining while inductive logic programming extracts first order features whose structure is determined by background knowledge. The three approaches are demonstrated and evaluated in terms of a case study STULONG. It is a longitudinal preventive study of atherosclerosis where the data consist of series of longterm observations recording the development of risk factors and associated conditions.

  • Czech name

    Dolování sekvenčních dat: srovnávací případová studie vývoje rizikových faktorů aterosklerózy

  • Czech description

    Sekvenční data jsou významným zdrojem potenciálně nových lékařských znalostí. Článek aplikuje a srovnává tři různé přístupy sekvenčního dolování dat v případové studii vývoje rizikových faktorů aterosklerózy.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Systems, Man, and Cybernetics: Part C

  • ISSN

    1094-6977

  • e-ISSN

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000251840500002

  • EID of the result in the Scopus database