Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03139207" target="_blank" >RIV/68407700:21230/08:03139207 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks
Original language description
This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possibleto predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used
Czech name
Modelování opotřebení vrtáků pomocí eGMDH algoritmu
Czech description
Článek prezentuje přístup využívající algrotmu eGMDH k predikci opotřebení vrtných nástrojů při vrtání. To je odhadováno ze vstupních parametrů - rychlost, příkon a hloubka vrtu. V článku je prezentována jak metoda eGMDH tak i výsledky realizovaných experimentů.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The International Journal of Advanced Manufacturing Technology
ISSN
0268-3768
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
11-12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
—
UT code for WoS article
000260699300003
EID of the result in the Scopus database
—