All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03139207" target="_blank" >RIV/68407700:21230/08:03139207 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modeling Tool Wear in End Milling Using Enhanced GMDH Learning Networks

  • Original language description

    This paper presents an enhanced approach to predictive modeling for determining tool wear in end milling operations based on enhanced group method of data handling (e GMDH). Using milling input parameters (speed, feed, and depth of cut) and response (tool wear), the data for the model is partitioned into training and testing datasets, and the training dataset is used to realize a predictive model that is a function of the input parameters and the coefficients determined. In our approach, we first present a methodology for modeling, and then develop predictive model(s) of the problem being solved in the form of second order equations based on the input data and coefficients realized. This approach leads to some generalization because it becomes possibleto predict not only the test data obtained during experimentation, but other test data outside the experimental results can also be used

  • Czech name

    Modelování opotřebení vrtáků pomocí eGMDH algoritmu

  • Czech description

    Článek prezentuje přístup využívající algrotmu eGMDH k predikci opotřebení vrtných nástrojů při vrtání. To je odhadováno ze vstupních parametrů - rychlost, příkon a hloubka vrtu. V článku je prezentována jak metoda eGMDH tak i výsledky realizovaných experimentů.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1ET101210513" target="_blank" >1ET101210513: Relational machine learning for analysis of biomedical data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The International Journal of Advanced Manufacturing Technology

  • ISSN

    0268-3768

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    11-12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000260699300003

  • EID of the result in the Scopus database