All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Implementation of the THSOM Neural Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145832" target="_blank" >RIV/68407700:21230/08:03145832 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Implementation of the THSOM Neural Network

  • Original language description

    Recent trends in microprocessor design clearly show that the multicore processors are the answer to the question how to scale up the processing power of today's computers. In this article we present our C implementation of the Temporal Hebbian Self-organizing Map (THSOM) neural network. This kind of neural networks have growing computational complexity for larger networks, therefore we present different approaches to the parallel processing -- instruction based parallelism and data-based parallelism ortheir combination. Our C implementation of THSOM is modular and multi-platform, allowing us to move critical parts of the algorithm to other cores, platforms or use different levels of the instruction parallelism yet still run exactly the same computational flows -- maintaining good comparability between different setups. For our experiments, we have chosen a multicore x86 system.

  • Czech name

    Efektivní implementace neuronové sítě THSOM

  • Czech description

    Recent trends in microprocessor design clearly show that the multicore processors are the answer to the question how to scale up the processing power of today's computers. In this article we present our C implementation of the Temporal Hebbian Self-organizing Map (THSOM) neural network. This kind of neural networks have growing computational complexity for larger networks, therefore we present different approaches to the parallel processing -- instruction based parallelism and data-based parallelism ortheir combination. Our C implementation of THSOM is modular and multi-platform, allowing us to move critical parts of the algorithm to other cores, platforms or use different levels of the instruction parallelism yet still run exactly the same computational flows -- maintaining good comparability between different setups. For our experiments, we have chosen a multicore x86 system.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks - ICANN 2008

  • ISBN

    978-3-540-87558-1

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Prague

  • Event date

    Sep 3, 2008

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article

    000259567200017