ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03145833" target="_blank" >RIV/68407700:21230/08:03145833 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
Original language description
Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.
Czech name
ECG Signal Classification using GAME Neural Network and its comparison to other classifiers
Czech description
Long term Holter monitoring is widely applied to patients with heart diseases. Many of those diseases are not constantly present in the ECG signal but occurs from time to time. To detect these infrequent problems the Holter long time ECG recording is recorded and analysed. There are many methods for automatic detection of irregularities in the ECG signal. In this paper we will comapare the Support Vector Machine (SVM), J48 decision tree (J48), RBF artificial neural network (RBF), Simple logistic function and our novel GAME neural network for detection of the Premature Ventricular Contractions. We will compare and discuss classification performance of mentioned methods. There are also very many features which describes the ECG signal therefore we will try to identify features important for correct classification and examine how the accuracy is affected with only selected features in training set.
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB201210701" target="_blank" >KJB201210701: Automated Knowledge Extraction</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks - ICANN 2008, PT I
ISBN
978-3-540-87535-2
ISSN
0302-9743
e-ISSN
—
Number of pages
10
Pages from-to
—
Publisher name
Springer
Place of publication
Heidelberg
Event location
Prague
Event date
Sep 3, 2008
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000259566200079