ssMRP state detection for brain computer interfacing using hidden Markov models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00158093" target="_blank" >RIV/68407700:21230/09:00158093 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ssMRP state detection for brain computer interfacing using hidden Markov models
Original language description
This paper reports preliminary results of steady-state movement related potential (ssMRP) classification using hidden Markov models (HMM). We develop a HMM-based classifier for a three-class BCI problem, i.e. rest, left/right finger tapping. Note that incontrast to [1], we here experimentally select the best pair of channels which attain the highest classification score instead of the 45 electrodes all over the sensorimotor cortex. The averaged correct classification rates (CCR) for different sliding time windows are reported. Reliable single trial classification rates of approximately 60%-80% accuracy are achievable.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Statistical Signal Processing, 2009. SSP '09. IEEE/SP 15th Workshop on
ISBN
978-1-4244-2709-3
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
—
Publisher name
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Place of publication
New York
Event location
Cardiff
Event date
Aug 31, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—