Using Hierarchical Clustering for Newborn EEG Signal Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F09%3A00160966" target="_blank" >RIV/68407700:21230/09:00160966 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21460/09:00160966
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Using Hierarchical Clustering for Newborn EEG Signal Classification
Original language description
This paper addresses automated classification of newborn sleep electroencephalogram (EEG) using hierarchical clustering. Newborn EEG plays an important role in determining the maturity level of neonatal brain. For accurate classification it is necessaryto determine and/or calculate the most informative features. In our approach we use a method based on power spectral density (PSD) applied to each EEG channel. We also use features derived from EOG; EMG; ECG and PNG signals. The goal of the classifiers was to separate different classes of the PSG recording correctly (and minimize the classification error).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1ET101210512" target="_blank" >1ET101210512: Intelligent methods for evaluation of long-term EEG recordings</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Workshop 09
ISBN
978-80-01-04286-1
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
—
Publisher name
ČVUT
Place of publication
Praha
Event location
Praha
Event date
Feb 16, 2009
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—