Recursive Program Schemes and Context-Free Monads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00169189" target="_blank" >RIV/68407700:21230/10:00169189 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Recursive Program Schemes and Context-Free Monads
Original language description
Solutions of recursive program schemes over a given signature were characterized by Bruno Courcelle as precisely the context-free (or algebraic) Sigma-trees. These are the finite and infinite Sigma-trees yielding, via labelling of paths, context-free languages. Our aim is to generalize this to finitary endofunctors H of general categories: we construct a monad C^H generated by solutions of recursive program schemes of type H, and prove that this monad is ideal. In case of polynomial endofunctors of Set our construction precisely yields the monad of context-free Sigma-trees of Courcelle. Our result builds on a result by N. Ghani et al on solutions of algebraic systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Theoretical Computer Science
ISSN
1571-0661
e-ISSN
—
Volume of the periodical
2010
Issue of the periodical within the volume
264
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—