All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On second-order iterative monads

Result description

B. Courcelle studied algebraic trees as precisely the solutions of all recursive program schemes for a given signature in Set. He proved that the corresponding monad is iterative. We generalize this to recursive program schemes over a given unitary endofunctor H of a "suitable" category. A monad is called second-order iterative if every guarded recursive program scheme has a unique solution in it. We construct two second-order iterative monads: one, called the second-order rational monad, S(H), is proved to be the initial second-order iterative monad. The other one, called the context-free monad, C(H), is a quotient of S(H) and in the original case of a polynomial endofunctor H of Set we prove that C(H) is the monad studied by B. Courcelle. The question whether these two monads are equal is left open. (C) 2011 Elsevier B.V. All rights reserved.

Keywords

Algebraic treesRecursive program schemesIdeal theoryMonadsINFINITE-TREESALGEBRASFINITARY

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    On second-order iterative monads

  • Original language description

    B. Courcelle studied algebraic trees as precisely the solutions of all recursive program schemes for a given signature in Set. He proved that the corresponding monad is iterative. We generalize this to recursive program schemes over a given unitary endofunctor H of a "suitable" category. A monad is called second-order iterative if every guarded recursive program scheme has a unique solution in it. We construct two second-order iterative monads: one, called the second-order rational monad, S(H), is proved to be the initial second-order iterative monad. The other one, called the context-free monad, C(H), is a quotient of S(H) and in the original case of a polynomial endofunctor H of Set we prove that C(H) is the monad studied by B. Courcelle. The question whether these two monads are equal is left open. (C) 2011 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    412

  • Issue of the periodical within the volume

    38

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    4969-4988

  • UT code for WoS article

    000294317000002

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2011