All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On second-order iterative monads

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00181889" target="_blank" >RIV/68407700:21230/11:00181889 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.tcs.2011.04.027" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2011.04.027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2011.04.027" target="_blank" >10.1016/j.tcs.2011.04.027</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On second-order iterative monads

  • Original language description

    B. Courcelle studied algebraic trees as precisely the solutions of all recursive program schemes for a given signature in Set. He proved that the corresponding monad is iterative. We generalize this to recursive program schemes over a given unitary endofunctor H of a "suitable" category. A monad is called second-order iterative if every guarded recursive program scheme has a unique solution in it. We construct two second-order iterative monads: one, called the second-order rational monad, S(H), is proved to be the initial second-order iterative monad. The other one, called the context-free monad, C(H), is a quotient of S(H) and in the original case of a polynomial endofunctor H of Set we prove that C(H) is the monad studied by B. Courcelle. The question whether these two monads are equal is left open. (C) 2011 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

  • Volume of the periodical

    412

  • Issue of the periodical within the volume

    38

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    20

  • Pages from-to

    4969-4988

  • UT code for WoS article

    000294317000002

  • EID of the result in the Scopus database