Cancellative residuated lattices arising on 2-generated submonoids of natural numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00171633" target="_blank" >RIV/68407700:21230/10:00171633 - isvavai.cz</a>
Alternative codes found
RIV/67985807:_____/10:00348399
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Cancellative residuated lattices arising on 2-generated submonoids of natural numbers
Original language description
It is known that there are only two cancellative atoms in the subvariety lattice of residuated lattices, namely the variety of Abelian l-groups CLG generated by the additive l-group of integers and the variety CLG(-) generated by the negative cone of this l-group. In this paper we consider all cancellative residuated chains arising on 2-generated submonoids of natural numbers and show that almost all of them generate a cover of CLG(-). This proves that there are infinitely many covers above CLG(-) whichare commutative, integral, and representable.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100300701" target="_blank" >KJB100300701: Complexity of t-norm based logics - algebraic and proof-theoretical approach</a><br>
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
2-3
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
—
UT code for WoS article
000283085400010
EID of the result in the Scopus database
—