Error analysis of a DG method employing ideal elements applied to a nonlinear convection-diffusion problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00182386" target="_blank" >RIV/68407700:21230/11:00182386 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/JNUM.2011.007" target="_blank" >http://dx.doi.org/10.1515/JNUM.2011.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/JNUM.2011.007" target="_blank" >10.1515/JNUM.2011.007</a>
Alternative languages
Result language
angličtina
Original language name
Error analysis of a DG method employing ideal elements applied to a nonlinear convection-diffusion problem
Original language description
In this paper we use the discontinuous Galerkin finite element method for the space-semidiscretization of a nonlinear nonstationary convection-diffusion problem defined on a nonpolygonal two-dimensional domain. Using Zlámal's concept of the ideal curvedelements, we define a finite element space . We prove the 'ideal' versions of the inverse and the multiplicative trace inequalities known for standard straight triangulations. Further, we define a projection on the finite element space and study its approximation properties. The obtained results allow us to derive an H1-optimal error estimate for the discontinuous Galerkin method employing the ideal curved elements.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Numerical Mathematics
ISSN
1570-2820
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
137-163
UT code for WoS article
000292773100003
EID of the result in the Scopus database
—