Context-Sensitive Refinements for Stochastic Optimisation Algorithms in Inductive Logic Programming
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00185744" target="_blank" >RIV/68407700:21230/11:00185744 - isvavai.cz</a>
Result on the web
<a href="http://www.springerlink.com/content/w450n21140245x78/" target="_blank" >http://www.springerlink.com/content/w450n21140245x78/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10462-010-9181-y" target="_blank" >10.1007/s10462-010-9181-y</a>
Alternative languages
Result language
angličtina
Original language name
Context-Sensitive Refinements for Stochastic Optimisation Algorithms in Inductive Logic Programming
Original language description
We describe a new approach to the application of stochastic search in Inductive Logic Programming (ILP). Contrary to traditional approaches we do not focus directly on evolving logical concepts. Instead, our refinement-based approach uses the stochasticoptimization process to iteratively adapt the initial working concept. It enables using available background knowledge both for efficiently restricting the search space and for directing the search. Thereby, the search is more flexible, less problem-specific and the framework can be easily used with any stochastic search algorithm within ILP domain. Experimental results on several data sets verify the usefulness of this approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F1875" target="_blank" >GAP103/10/1875: Learning from Theories</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Artificial Intelligence Review
ISSN
0269-2821
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
19-36
UT code for WoS article
000286054000002
EID of the result in the Scopus database
—