All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Who Knows Who - Inverting the Social Force Model for Finding Groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187147" target="_blank" >RIV/68407700:21230/11:00187147 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Who Knows Who - Inverting the Social Force Model for Finding Groups

  • Original language description

    Social groups based on friendship or family relations are very common phenomena in human crowds and a valuable cue for a crowd activity recognition system. In this paper we present an algorithm for automatic on-line inference of social groups from observed trajectories of individual people. The method is based on the Social Force Model (SFM) - widely used in crowd simulation applications -- which specifies several attractive and repulsive forces influencing each individual relative to the other pedestrians and their environment. The main contribution of the paper is an algorithm for inference of the social groups (parameters of the SFM) based on analysis of the observed trajectories through attractive or repulsive forces which could lead to such behaviour. The proposed SFM-based method shows its clear advantage especially in more crowded scenarios where other state-of-the-art methods fail. The applicability of the algorithm is illustrated on an abandoned bag scenario.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7E10045" target="_blank" >7E10045: Massive Sets of Heuristics for Machine Learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops)

  • ISBN

    978-1-4673-0063-6

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    830-837

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Barcelona

  • Event date

    Nov 6, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article