All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Text Localization in Real-World Images Using Efficiently Pruned Exhaustive Search

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187378" target="_blank" >RIV/68407700:21230/11:00187378 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICDAR.2011.144" target="_blank" >http://dx.doi.org/10.1109/ICDAR.2011.144</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDAR.2011.144" target="_blank" >10.1109/ICDAR.2011.144</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Text Localization in Real-World Images Using Efficiently Pruned Exhaustive Search

  • Original language description

    An efficient method for text localization and recognition in real-world images is proposed. Thanks to effective pruning, it is able to exhaustively search the space of all character sequences in real time (200ms on a 640x480 image). The method exploits higher-order properties of text such as word text lines. We demonstrate that the grouping stage plays a key role in the text localization performance and that a robust and precise grouping stage is able to compensate errors of the character detector. Themethod includes a novel selector of Maximally Stable Extremal Regions (MSER) which exploits region topology. Experimental validation shows that 95.7% characters in the ICDAR dataset are detected using the novel selector of MSERs with a low sensitivity threshold. The proposed method was evaluated on the standard ICDAR 2003 dataset where it achieved state-of-the-art results in both text localization and recognition.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7E10045" target="_blank" >7E10045: Massive Sets of Heuristics for Machine Learning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Document Analysis and Recognition (ICDAR), 2011 International Conference on

  • ISBN

    978-1-4577-1350-7

  • ISSN

    1520-5363

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    687-691

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Beijing

  • Event date

    Sep 18, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article