MaLeCoP - Machine Learning Connection Prover
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00191749" target="_blank" >RIV/68407700:21230/11:00191749 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
MaLeCoP - Machine Learning Connection Prover
Original language description
Probabilistic guidance based on learned knowledge is added to the connection tableau calculus and implemented on top of the lean-CoP theorem prover, linking it to an external advisor system. In the typical mathematical setting of solving many problems ina large complex theory, learning from successful solutions is then used for guiding theorem proving attempts in the spirit of the MaLARea system. While in MaLARea learning-based axiom selection is done outside unmodified theorem provers, in MaLeCoP thelearning-based selection is done inside the prover, and the interaction between learning of knowledge and its application can be much finer. This brings interesting possibilities for further construction and training of self-learning AI mathematical experts on large mathematical libraries, some of which are discussed. The initial implementation is evaluated on the MPTP Challenge large theory benchmark
Czech name
—
Czech description
—
Classification
Type
R - Software
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Internal product ID
MaLeCoP
Technical parameters
"open source", SWI-Prolog, UNIX-Bash, Perl
Economical parameters
Nemá ekonomické parametry, určeno pro základní výzkum v oboru automatického uvažování a strojového učení.
Owner IČO
68407700
Owner name
ČVUT FEL Katedra kybernetiky