All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Empirical Evidence of the Applicability of Functional Clustering through Gene Expression Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193189" target="_blank" >RIV/68407700:21230/12:00193189 - isvavai.cz</a>

  • Result on the web

    <a href="http://delivery.acm.org/10.1145/2190000/2189819/ttb2012030788.pdf?ip=147.32.80.13&acc=ACTIVE%20SERVICE&CFID=105155070&CFTOKEN=54614029&__acm__=1337931276_cc8c68fee89e41aac8fe30bb2da302e7" target="_blank" >http://delivery.acm.org/10.1145/2190000/2189819/ttb2012030788.pdf?ip=147.32.80.13&acc=ACTIVE%20SERVICE&CFID=105155070&CFTOKEN=54614029&__acm__=1337931276_cc8c68fee89e41aac8fe30bb2da302e7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TCBB.2012.23" target="_blank" >10.1109/TCBB.2012.23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Empirical Evidence of the Applicability of Functional Clustering through Gene Expression Classification

  • Original language description

    The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene interactions allows us to simplify the analysis of gene expression data to make it more robust, compact and interpretable. Here, we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to the centroids of the gene clusters and are then used for classifier learning. Using ten benchmark datasets, we demonstrate that functionalclustering significantly outperforms random clustering without biological relevance. We also show that functional clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expres

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EB - Genetics and molecular biology

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Computational Biology and Bioinformatics

  • ISSN

    1545-5963

  • e-ISSN

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    788-798

  • UT code for WoS article

    000301293900014

  • EID of the result in the Scopus database