Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193378" target="_blank" >RIV/68407700:21230/12:00193378 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TAC.2011.2178717" target="_blank" >http://dx.doi.org/10.1109/TAC.2011.2178717</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2011.2178717" target="_blank" >10.1109/TAC.2011.2178717</a>
Alternative languages
Result language
angličtina
Original language name
Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions
Original language description
Following a polynomial approach, many robust fixedorder controller design problems can be formulated as optimization problems whose set of feasible solutions is modeled by parametrized polynomial matrix inequalities (PMIs). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modeled by a single polynomial superlevel set. Those inner approximations converge ina well-defined analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case, they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the h
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP103%2F10%2F0628" target="_blank" >GAP103/10/0628: Semidefinite programming for nonlinear dynamical systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1456-1467
UT code for WoS article
000304609300009
EID of the result in the Scopus database
—