All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193378" target="_blank" >RIV/68407700:21230/12:00193378 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/TAC.2011.2178717" target="_blank" >http://dx.doi.org/10.1109/TAC.2011.2178717</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2011.2178717" target="_blank" >10.1109/TAC.2011.2178717</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inner Approximations for Polynomial Matrix Inequalities and Robust Stability Regions

  • Original language description

    Following a polynomial approach, many robust fixedorder controller design problems can be formulated as optimization problems whose set of feasible solutions is modeled by parametrized polynomial matrix inequalities (PMIs). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner approximations modeled by a single polynomial superlevel set. Those inner approximations converge ina well-defined analytic sense to the nonconvex original feasible set, with asymptotically vanishing conservatism. One may also impose the hierarchy of inner approximations to be nested or convex. In the latter case, they do not converge any more to the feasible set, but they can be used in a convex optimization framework at the price of some conservatism. Finally, we show that the specific geometry of nonconvex polynomial stability regions can be exploited to improve convergence of the h

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F10%2F0628" target="_blank" >GAP103/10/0628: Semidefinite programming for nonlinear dynamical systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

  • Volume of the periodical

    57

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1456-1467

  • UT code for WoS article

    000304609300009

  • EID of the result in the Scopus database