Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03118073" target="_blank" >RIV/68407700:21230/06:03118073 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback
Original language description
Using a moment interpretation of recent results on sum-of-squares decompositions of nonnegative polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to solve nonconvex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower bounds that converges to the global optimum. Results from the theory of moments are used to detect whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback design problems.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Automatic Control
ISSN
0018-9286
e-ISSN
—
Volume of the periodical
51
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
192-202
UT code for WoS article
—
EID of the result in the Scopus database
—