All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effective Free-Text Medical Record Processing and Information Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00193461" target="_blank" >RIV/68407700:21230/12:00193461 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14110/12:00064004

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-29305-4_342" target="_blank" >http://dx.doi.org/10.1007/978-3-642-29305-4_342</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-29305-4_342" target="_blank" >10.1007/978-3-642-29305-4_342</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effective Free-Text Medical Record Processing and Information Retrieval

  • Original language description

    Information mining from textual data becomes a very challenging task when the structure of the text record is very loose without any rules. The task becomes even more difficult when natural language is used and no apriori knowledge is available. The medical environment itself is also very specific: the natural language used in textual description varies with the personality creating the record (there are many personalized approaches), however it is restricted by terminology (i.e. medici terms, medical standards, etc.). Moreover, the typical patient record is filled with typographical errors, duplicates, ambiguities, syntax errors and many (nonstandard) abbreviations. This paper describes the process of mining informatik from loosely structured medicaltextual records with no apriori knowledge. In the paper we depict the process of mining a large dataset of ~50,000-120,000 records x 20 attributes in database tables, originating from the hospital information systém (thanks go to the Univ

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/NT11124" target="_blank" >NT11124: Impact of Cardiotocography evaluation by means of artificial inteligence on perinatal care</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    IFMBE Proceedings: World Congress on Medical Physics and Biomedical Engineering

  • ISBN

    978-3-642-29304-7

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    1305-1308

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Beijing ( Peking)

  • Event date

    May 26, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article