All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Obstetric Medical Record Processing and Information Retrieval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00201789" target="_blank" >RIV/68407700:21230/12:00201789 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-29262-0_4#" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-29262-0_4#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-29262-0_4" target="_blank" >10.1007/978-3-642-29262-0_4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Obstetric Medical Record Processing and Information Retrieval

  • Original language description

    This paper describes the process of mining information from loosely structured medical textual records with no apriori knowledge. In the paper we depict the process of mining a large dataset of ~50,000-120,000 records x 20 attributes in database tables,originating from the hospital information system (thanks go to the University Hospital in Brno, Czech Republic) recording over 10 years. This paper concerns only textual attributes with free text input, that means 613,000 text fields in 16 attributes. Each attribute item contains ~800-1,500 characters (diagnoses, medications, etc.). The output of this task is a set of ordered/nominal attributes suitable for rule discovery mining and automated processing. Information mining from textual data becomes a very challenging task when the structure of the text record is very loose without any rules. The task becomes even more difficult when natural language is used and no apriori knowledge is available. The medical environment itself is also ve

  • Czech name

  • Czech description

Classification

  • Type

    C - Chapter in a specialist book

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/NT11124" target="_blank" >NT11124: Impact of Cardiotocography evaluation by means of artificial inteligence on perinatal care</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Book/collection name

    Electronic Healthcare

  • ISBN

    978-3-642-29261-3

  • Number of pages of the result

    8

  • Pages from-to

    26-33

  • Number of pages of the book

    205

  • Publisher name

    Springer

  • Place of publication

    Dordrecht

  • UT code for WoS chapter