Wrapper Feature Selection for Small Sample Size Data Driven by Complete Error Estimates
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00194629" target="_blank" >RIV/68407700:21230/12:00194629 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11110/12:11917 RIV/00064165:_____/12:11917
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0169260712000582" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0169260712000582</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cmpb.2012.02.006" target="_blank" >10.1016/j.cmpb.2012.02.006</a>
Alternative languages
Result language
angličtina
Original language name
Wrapper Feature Selection for Small Sample Size Data Driven by Complete Error Estimates
Original language description
This paper focuses on wrapper-based feature selection for a 1-nearest neighbor classifier. We consider in particular the case of a small sample size with a few hundred instances, which is common in biomedical applications. We propose a technique for calculating the complete bootstrap for a 1-nearest-neighbor classifier (i.e., averaging over all desired test/train partitions of the data). The complete bootstrap and the complete cross-validation error estimate with lower variance are applied as novel selection criteria and are compared with the standard bootstrap and cross-validation in combination with three optimization techniques - sequential forward selection (SFS), binary particle swarm optimization (BPSO) and simplified social impact theory based optimization (SSITO). The experimental comparison based on ten datasets draws the following conclusions: for all three search methods examined here, the complete criteria are a significantly better choice than standard 2-fold cross-validat
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA309%2F09%2F1145" target="_blank" >GA309/09/1145: Mechanisms of deep brain stimulation: Role of the subthalamus in motor, visual and affective processing</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Methods and Programs in Biomedicine
ISSN
0169-2607
e-ISSN
—
Volume of the periodical
108
Issue of the periodical within the volume
1
Country of publishing house
IE - IRELAND
Number of pages
13
Pages from-to
138-150
UT code for WoS article
000309443000013
EID of the result in the Scopus database
—