Enriched Logical Connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00206170" target="_blank" >RIV/68407700:21230/13:00206170 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10485-011-9267-y" target="_blank" >http://dx.doi.org/10.1007/s10485-011-9267-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-011-9267-y" target="_blank" >10.1007/s10485-011-9267-y</a>
Alternative languages
Result language
angličtina
Original language name
Enriched Logical Connections
Original language description
Abstract: In the setting of enriched category theory, we describe dual adjunctions of the form Ldashv R:Spa^op --> Alg between the dual of the category Spa of ``spaces'' and the category Alg of ``algebras'' that arise from a schizophrenic object Omega, which is both an ``algebra'' and a ``space''. We call such adjunctions logical connections. We prove that the exact nature of Omega is that of a module that allows to lift optimally the structure of a ``space'' and an ``algebra'' to certain diagrams. Ourapproach allows to give a unified framework known from logical connections over the category of sets and analyzed, e.g., by Hans Porst and Walter Tholen, with future applications of logical connections in coalgebraic logic and elsewhere, where typically,both the category of ``spaces'' and the category of ``algebras'' consist of ``structured presheaves`'.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
21
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
29
Pages from-to
349-377
UT code for WoS article
000323901400002
EID of the result in the Scopus database
—