All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Towards Learning Hierarchical Compositional Models in the Presence of Clutter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00212542" target="_blank" >RIV/68407700:21230/13:00212542 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-41181-6_54" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41181-6_54</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41181-6_54" target="_blank" >10.1007/978-3-642-41181-6_54</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Towards Learning Hierarchical Compositional Models in the Presence of Clutter

  • Original language description

    Our goal is to identify hierarchical compositional models from highly cluttered data. The data to learn from are assumed to be imperfect in two respects. Firstly, large portion of the data is coming from background clutter. Secondly, data generated by arecursive compositional model are subject to random replacements of correct descendants by randomly chosen ones at every level of the hierarchy. In this paper, we study the limits and capabilities of an approach which is based on likelihood maximization.The algorithm makes explicit probabilistic assignments of individual data to compositional model and background clutter. It uses these assignments to effectively focus on the data coming from the compositional model and iteratively estimate their compositional structure.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F12%2F1578" target="_blank" >GAP103/12/1578: Structural and Semantic Modeling of Architecture as a Digital Image Interpretation Problem</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Image Analysis and Processing - ICIAP 2013

  • ISBN

    978-3-642-41180-9

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    532-541

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Naples

  • Event date

    Sep 9, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article