Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217382" target="_blank" >RIV/68407700:21230/14:00217382 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TPAMI.2013.171" target="_blank" >http://dx.doi.org/10.1109/TPAMI.2013.171</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TPAMI.2013.171" target="_blank" >10.1109/TPAMI.2013.171</a>
Alternative languages
Result language
angličtina
Original language name
Non-Rigid Object Detection with Local Interleaved Sequential Alignment (LISA)
Original language description
This paper shows that the successively evaluated features used in a sliding window detection process to decide about object presence/absence also contain knowledge about object deformation. We exploit these detection features to estimate the object deformation. Estimated deformation is then immediately applied to not yet evaluated features to align them with the observed image data. In our approach, the alignment estimators are jointly learned with the detector. The joint process allows for the learningof each detection stage from less deformed training samples than in the previous stage. For the alignment estimation we propose regressors that approximate non-linear regression functions and compute the alignment parameters extremely fast.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Pattern Analysis and Machine Intelligence
ISSN
0162-8828
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
731-743
UT code for WoS article
000334109000008
EID of the result in the Scopus database
—