All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00212523" target="_blank" >RIV/68407700:21230/13:00212523 - isvavai.cz</a>

  • Result on the web

    <a href="http://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/hurych-accv2012.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/hurycd1/hurych-accv2012.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-37331-2_34" target="_blank" >10.1007/978-3-642-37331-2_34</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exploiting Features - Locally Interleaved Sequential Alignment for Object Detection

  • Original language description

    We exploit image features multiple times in order to make sequential decision process faster and better performing. In the decision process features providing knowledge about the object presence or absence in a given detection window are successively evaluated. We show that these features also provide information about object position within the evaluated window. The classification process is sequentially interleaved with estimating the correct position. The position estimate is used for steering the features yet to be evaluated. This locally interleaved sequential alignment (LISA) allows to run an object detector on sparser grid which speeds up the process. The position alignment is jointly learned with the detector. We achieve a better detection ratesince the method allows for training the detector on perfectly aligned image samples. For estimation of the alignment we propose a learnable regressor that approximates a non-linear regression function and runs in ne2076-1465gligible tim

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision - ACCV 2012, 11th Asian Conference on Computer Vision, Part 1

  • ISBN

    978-3-642-37330-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    446-459

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Daejeon

  • Event date

    Nov 5, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article