Artificial Neural Network Utilization for FSO Link Performance Estimation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217539" target="_blank" >RIV/68407700:21230/14:00217539 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Artificial Neural Network Utilization for FSO Link Performance Estimation
Original language description
This paper describes FSO link performance prediction based on available meteorological data using different Artificial Neural Network (ANN) approaches. Several types of ANNs were compared and their performance were evaluated. The paper introduces an ANNapplication utilizing real delayed data. This approach has been validated to be more precise than common feed-forward neural networks.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LD12058" target="_blank" >LD12058: Research of Ambient Influences on Novel Broadband Optical Wireless Systems (RAINBOWS)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Radioengineering
ISSN
1210-2512
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
6
Pages from-to
474-479
UT code for WoS article
000334729600024
EID of the result in the Scopus database
—