Fast Features Invariant to Rotation and Scale of Texture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00218863" target="_blank" >RIV/68407700:21230/14:00218863 - isvavai.cz</a>
Result on the web
<a href="http://cmp.felk.cvut.cz/~sulcmila/papers/Sulc-TR-2014-12.pdf" target="_blank" >http://cmp.felk.cvut.cz/~sulcmila/papers/Sulc-TR-2014-12.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fast Features Invariant to Rotation and Scale of Texture
Original language description
A family of novel texture representations called Ffirst, the Fast Features Invariant to Rotation and Scale of Texture, is introduced. New rotation invariants are proposed, extending the LBP-HF features, improving the recognition accuracy. Using the fullset of LBP features, as opposed to uniform only, leads to further improvement. Linear Support Vector Machines with an approximate $chi^2$-kernel map are used for fast and precise classification. Experimental results show that Ffirst exceeds the best reported results in texture classification on three difficult texture datasets KTH-TIPS2a, KTH-TIPS2b and ALOT, achieving 88%, 76% and 96% accuracy respectively. The recognition rates are above 99% on standard texture datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.
Czech name
—
Czech description
—
Classification
Type
V<sub>souhrn</sub> - Summary research report
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Center for Large Scale Multi-modal Data Interpretation</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Number of pages
20
Place of publication
Praha
Publisher/client name
Center for Machine Perception, K13133 FEE Czech Technical University
Version
—