All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

States on systems of sets that are closed under symmetric difference

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234486" target="_blank" >RIV/68407700:21230/15:00234486 - isvavai.cz</a>

  • Result on the web

    <a href="http://onlinelibrary.wiley.com/doi/10.1002/mana.201500029/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/mana.201500029/abstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201500029" target="_blank" >10.1002/mana.201500029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    States on systems of sets that are closed under symmetric difference

  • Original language description

    We consider extensions of certain states. The states are defined on the systems of sets that are closed under the formation of the symmetric difference (concrete quantum logics). These systems can be viewed as certain set-representable quantum logics enriched with the symmetric difference. We first show how the compactness argument allows us to extend states on Boolean algebras over such systems of sets. We then observe that the extensions are sometimes possible even for non-Boolean situations. On the other hand, a difference-closed system can be constructed such that even two-valued states do not allow for extensions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    288

  • Issue of the periodical within the volume

    17-18

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    6

  • Pages from-to

    1995-2000

  • UT code for WoS article

    000368047000006

  • EID of the result in the Scopus database

    2-s2.0-84938149807