States on systems of sets that are closed under symmetric difference
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234486" target="_blank" >RIV/68407700:21230/15:00234486 - isvavai.cz</a>
Result on the web
<a href="http://onlinelibrary.wiley.com/doi/10.1002/mana.201500029/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/mana.201500029/abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201500029" target="_blank" >10.1002/mana.201500029</a>
Alternative languages
Result language
angličtina
Original language name
States on systems of sets that are closed under symmetric difference
Original language description
We consider extensions of certain states. The states are defined on the systems of sets that are closed under the formation of the symmetric difference (concrete quantum logics). These systems can be viewed as certain set-representable quantum logics enriched with the symmetric difference. We first show how the compactness argument allows us to extend states on Boolean algebras over such systems of sets. We then observe that the extensions are sometimes possible even for non-Boolean situations. On the other hand, a difference-closed system can be constructed such that even two-valued states do not allow for extensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
288
Issue of the periodical within the volume
17-18
Country of publishing house
DE - GERMANY
Number of pages
6
Pages from-to
1995-2000
UT code for WoS article
000368047000006
EID of the result in the Scopus database
2-s2.0-84938149807