On Zippin's Embedding Theorem of Banach spaces into Banach spaces with bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00237763" target="_blank" >RIV/68407700:21230/15:00237763 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aim.2015.02.004" target="_blank" >http://dx.doi.org/10.1016/j.aim.2015.02.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2015.02.004" target="_blank" >10.1016/j.aim.2015.02.004</a>
Alternative languages
Result language
angličtina
Original language name
On Zippin's Embedding Theorem of Banach spaces into Banach spaces with bases
Original language description
We present a new proof of Zippin's Embedding Theorem, that every separable reflexive Banach space embeds into one with shrinking and boundedly complete basis, and every Banach space with a separable dual embeds into one with a shrinking basis. This new proof leads to improved versions of other embedding results. (C) 2015 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Mathematics
ISSN
0001-8708
e-ISSN
—
Volume of the periodical
274
Issue of the periodical within the volume
APR
Country of publishing house
GB - UNITED KINGDOM
Number of pages
48
Pages from-to
833-880
UT code for WoS article
000352044300025
EID of the result in the Scopus database
2-s2.0-84923079854