Boundedness of completely additive measures with application to 2-local triple derivations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00242322" target="_blank" >RIV/68407700:21230/16:00242322 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4941988" target="_blank" >http://dx.doi.org/10.1063/1.4941988</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4941988" target="_blank" >10.1063/1.4941988</a>
Alternative languages
Result language
angličtina
Original language name
Boundedness of completely additive measures with application to 2-local triple derivations
Original language description
We prove a Jordan version of Dorofeev's boundedness theorem for completely additive measures and use it to show that every (not necessarily linear nor continuous) 2-local triple derivation on a continuous JBW*-triple is a triple derivation. 2-local triple derivations are well understood on von Neumann algebras. JBW*-triples, which are properly defined in Section I, are intimately related to infinite dimensional holomorphy and include von Neumann algebras as special cases. In particular, continuous JBW*-triples can be realized as subspaces of continuous von Neumann algebras which are stable for the triple product xy*z + zy*x and closed in the weak operator topology. (C) 2016 AIP Publishing LLC.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
1-22
UT code for WoS article
000371620000023
EID of the result in the Scopus database
—