All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00303799" target="_blank" >RIV/68407700:21230/16:00303799 - isvavai.cz</a>

  • Result on the web

    <a href="http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf" target="_blank" >http://cmp.felk.cvut.cz/~radenfil/publications/Radenovic-ECCV16.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46448-0_1" target="_blank" >10.1007/978-3-319-46448-0_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples

  • Original language description

    Convolutional Neural Networks (CNNs) achieve state-of-the-art performance in many computer vision tasks. However, this achievement is preceded by extreme manual annotation in order to perform either training from scratch or fine-tuning for the target task. In this work, we propose to fine-tune CNN for image retrieval from a large collection of unordered images in a fully automated manner. We employ state-of-the-art retrieval and Structure-from-Motion (SfM) methods to obtain 3D models, which are used to guide the selection of the training data for CNN fine-tuning. We show that both hard positive and hard negative examples enhance the final performance in particular object retrieval with compact codes.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I

  • ISBN

    978-3-319-46447-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    3-20

  • Publisher name

    Springer

  • Place of publication

  • Event location

    Amsterdam

  • Event date

    Oct 8, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000389382700001