All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

CNN Based Predictor of Face Image Quality

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347755" target="_blank" >RIV/68407700:21230/21:00347755 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-68780-9_52" target="_blank" >https://doi.org/10.1007/978-3-030-68780-9_52</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-68780-9_52" target="_blank" >10.1007/978-3-030-68780-9_52</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    CNN Based Predictor of Face Image Quality

  • Original language description

    We propose a novel method for training Convolution Neural Network, named CNN-FQ, which takes a face image and outputs a scalar summary of the image quality. The CNN-FQ is trained from triplets of faces that are automatically labeled based on responses of a pre-trained face matcher. The quality scores extracted by the CNN-FQ are directly linked to the probability that the face matcher incorrectly ranks a randomly selected triplet of faces. We applied the proposed CNN-FQ, trained on CASIA database, for selection of the best quality image from a collection of face images capturing the same identity. The quality of the single face representation was evaluated on 1:1 Verification and 1:N Identification tasks defined by the challenging IJB-B protocol. We show that the recognition performance obtained when using faces selected based on the CNN-FQ scores is significantly higher than what can be achieved by competing state-of-the-art image quality extractors.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA19-21198S" target="_blank" >GA19-21198S: Complex prediction models and their learning from weakly annotated data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Pattern Recognition. ICPR International Workshops and Challenges, Part VI

  • ISBN

    978-3-030-68779-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    679-693

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Milan

  • Event date

    Jan 10, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article