All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimating Sequence Similarity from Read Sets for Clustering Sequencing Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304251" target="_blank" >RIV/68407700:21230/16:00304251 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-46349-0_18" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-46349-0_18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-46349-0_18" target="_blank" >10.1007/978-3-319-46349-0_18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimating Sequence Similarity from Read Sets for Clustering Sequencing Data

  • Original language description

    Clustering biological sequences is a central task in bioinformatics. The typical result of new-generation sequencers is a set of short substrings (“reads”) of a target sequence, rather than the sequence itself. To cluster sequences given only their read-set representations, one may try to reconstruct each one from the corresponding read set, and then employ conventional (dis)similarity measures such as the edit distance on the assembled sequences. This approach is however problematic and we propose instead to estimate the similarities directly from the read sets. Our approach is based on an adaptation of the Monge-Elkan similarity known from the field of databases. It avoids the NP-hard problem of sequence assembly and in empirical experiments it results in a better approximation of the true sequence similarities and consequently in better clustering, in comparison to the first-assemble-then-cluster approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-21421S" target="_blank" >GA14-21421S: Automatic analysis of spatial gene expression patterns</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ADVANCES IN INTELLIGENT DATA ANALYSIS XV - Lecture Notes in Computer Science

  • ISBN

    978-3-319-46348-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    204-214

  • Publisher name

    Springer

  • Place of publication

    Wien

  • Event location

    Stockholm

  • Event date

    Oct 13, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000388259100018