All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

NetVLAD: CNN architecture for weakly supervised place recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304272" target="_blank" >RIV/68407700:21230/16:00304272 - isvavai.cz</a>

  • Result on the web

    <a href="http://80.ieeexplore.ieee.org.dialog.cvut.cz/document/7780941/" target="_blank" >http://80.ieeexplore.ieee.org.dialog.cvut.cz/document/7780941/</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    NetVLAD: CNN architecture for weakly supervised place recognition

  • Original language description

    We tackle the problem of large scale visual place recognition, where the task is to quickly and accurately recognize the location of a given query photograph. We present the following three principal contributions. First, we develop a convolutional neural network (CNN) architecture that is trainable in an end-to-end manner directly for the place recognition task. The main component of this architecture, NetVLAD, is a new generalized VLAD layer, inspired by the "Vector of Locally Aggregated Descriptors" image representation commonly used in image retrieval. The layer is readily pluggable into any CNN architecture and amenable to training via backpropagation. Second, we develop a training procedure, based on a new weakly supervised ranking loss, to learn parameters of the architecture in an end-to-end manner from images depicting the same places over time downloaded from Google Street View Time Machine. Finally, we show that the proposed architecture significantly outperforms non-learnt image representations and off-the-shelf CNN descriptors on two challenging place recognition benchmarks, and improves over current stateofthe-art compact image representations on standard image retrieval benchmarks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JD - Use of computers, robotics and its application

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/7E13015" target="_blank" >7E13015: Planetary Robotics Data Exploitation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2016: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-4673-8851-1

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    5297-5307

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamitos

  • Event location

    Las Vegas

  • Event date

    Jun 26, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article