All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graph-based particular object discovery

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332224" target="_blank" >RIV/68407700:21230/19:00332224 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00138-019-01005-z" target="_blank" >https://doi.org/10.1007/s00138-019-01005-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00138-019-01005-z" target="_blank" >10.1007/s00138-019-01005-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graph-based particular object discovery

  • Original language description

    Severe background clutter is challenging in many computer vision tasks, including large-scale image retrieval. Global descriptors, which are popular due to their memory and search efficiency, are especially prone to corruption by such a clutter. Eliminating the impact of the clutter on the image descriptor increases the chance of retrieving relevant images and prevents topic drift due to actually retrieving the clutter in the case of query expansion. In this work, we propose a novel salient region detection method. It captures, in an unsupervised manner, patterns that are both discriminative and common in the dataset. Saliency is based on a centrality measure of a nearest neighbor graph constructed from regional CNN representations of dataset images. The proposed method exploits recent CNN architectures trained for object retrieval to construct the image representation from the salient regions. We improve particular object retrieval on challenging datasets containing small objects.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Machine Vision and Applications

  • ISSN

    0932-8092

  • e-ISSN

    1432-1769

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    243-254

  • UT code for WoS article

    000462151000005

  • EID of the result in the Scopus database

    2-s2.0-85061245675