Unsupervised object discovery for instance recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327162" target="_blank" >RIV/68407700:21230/18:00327162 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/WACV.2018.00194" target="_blank" >http://dx.doi.org/10.1109/WACV.2018.00194</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV.2018.00194" target="_blank" >10.1109/WACV.2018.00194</a>
Alternative languages
Result language
angličtina
Original language name
Unsupervised object discovery for instance recognition
Original language description
Severe background clutter is challenging in many computer vision tasks, including large-scale image retrieval. Global descriptors, that are popular due to their memory and search efficiency, are especially prone to corruption by such a clutter. Eliminating the impact of the clutter on the image descriptor increases the chance of retrieving relevant images and prevents topic drift due to actually retrieving the clutter in the case of query expansion. In this work, we propose a novel salient region detection method. It captures, in an unsupervised manner, patterns that are both discriminative and common in the dataset. Saliency is based on a centrality measure of a nearest neighbor graph constructed from regional CNN representations of dataset images. The descriptors derived from the salient regions improve particular object retrieval, most noticeably in a large collections containing small objects.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018
ISBN
978-1-5386-4886-5
ISSN
2472-6737
e-ISSN
—
Number of pages
10
Pages from-to
1745-1754
Publisher name
Institute of Electrical and Electronics Engineers Inc
Place of publication
—
Event location
Lake Tahoe
Event date
Mar 12, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000434349200188