All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised object discovery for instance recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327162" target="_blank" >RIV/68407700:21230/18:00327162 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/WACV.2018.00194" target="_blank" >http://dx.doi.org/10.1109/WACV.2018.00194</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV.2018.00194" target="_blank" >10.1109/WACV.2018.00194</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised object discovery for instance recognition

  • Original language description

    Severe background clutter is challenging in many computer vision tasks, including large-scale image retrieval. Global descriptors, that are popular due to their memory and search efficiency, are especially prone to corruption by such a clutter. Eliminating the impact of the clutter on the image descriptor increases the chance of retrieving relevant images and prevents topic drift due to actually retrieving the clutter in the case of query expansion. In this work, we propose a novel salient region detection method. It captures, in an unsupervised manner, patterns that are both discriminative and common in the dataset. Saliency is based on a centrality measure of a nearest neighbor graph constructed from regional CNN representations of dataset images. The descriptors derived from the salient regions improve particular object retrieval, most noticeably in a large collections containing small objects.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LL1303" target="_blank" >LL1303: Large Scale Category Retrieval</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018

  • ISBN

    978-1-5386-4886-5

  • ISSN

    2472-6737

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    1745-1754

  • Publisher name

    Institute of Electrical and Electronics Engineers Inc

  • Place of publication

  • Event location

    Lake Tahoe

  • Event date

    Mar 12, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000434349200188