STATES WITH VALUES IN THE LUKASIEWICZ GROUPOID
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305083" target="_blank" >RIV/68407700:21230/16:00305083 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1515/ms-2015-0139" target="_blank" >http://dx.doi.org/10.1515/ms-2015-0139</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2015-0139" target="_blank" >10.1515/ms-2015-0139</a>
Alternative languages
Result language
angličtina
Original language name
STATES WITH VALUES IN THE LUKASIEWICZ GROUPOID
Original language description
In this paper we consider certain groupoid-valued measures and their connections with quantum logic states. Let * stand for the Lukasiewicz t-norm on [0, 1](2). Let us consider the operation lozenge on [0, 1] by setting x lozenge y = (x(perpendicular to)*y(perpendicular to))(perpendicular to) *(x*y)(perpendicular to), where x(perpendicular to) = 1-x. Let us call the triple L = ([0, 1], lozenge, 1) the Lukasiewicz groupoid. Let B be a Boolean algebra. Denote by L(B) the set of all L-valued measures (L-valued states). We show as a main result of this paper that the family L(B) consists precisely of the union of classical real states and Z(2)-valued states. With the help of this result we characterize the L-valued states on orthomodular posets. Since the orthomodular posets are often understood as "quantum logics" in the logico-algebraic foundation of quantum mechanics, our approach based on a fuzzy-logic notion actually select a special class of quantum states. As a matter of separate interest, we construct an orthomodular poset without any L-valued state. (C) 2016 Mathematical Institute Slovak Academy of Sciences
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
2
Country of publishing house
SK - SLOVAKIA
Number of pages
8
Pages from-to
335-342
UT code for WoS article
000387220200002
EID of the result in the Scopus database
—