All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

STATES WITH VALUES IN THE LUKASIEWICZ GROUPOID

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305083" target="_blank" >RIV/68407700:21230/16:00305083 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1515/ms-2015-0139" target="_blank" >http://dx.doi.org/10.1515/ms-2015-0139</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/ms-2015-0139" target="_blank" >10.1515/ms-2015-0139</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    STATES WITH VALUES IN THE LUKASIEWICZ GROUPOID

  • Original language description

    In this paper we consider certain groupoid-valued measures and their connections with quantum logic states. Let * stand for the Lukasiewicz t-norm on [0, 1](2). Let us consider the operation lozenge on [0, 1] by setting x lozenge y = (x(perpendicular to)*y(perpendicular to))(perpendicular to) *(x*y)(perpendicular to), where x(perpendicular to) = 1-x. Let us call the triple L = ([0, 1], lozenge, 1) the Lukasiewicz groupoid. Let B be a Boolean algebra. Denote by L(B) the set of all L-valued measures (L-valued states). We show as a main result of this paper that the family L(B) consists precisely of the union of classical real states and Z(2)-valued states. With the help of this result we characterize the L-valued states on orthomodular posets. Since the orthomodular posets are often understood as "quantum logics" in the logico-algebraic foundation of quantum mechanics, our approach based on a fuzzy-logic notion actually select a special class of quantum states. As a matter of separate interest, we construct an orthomodular poset without any L-valued state. (C) 2016 Mathematical Institute Slovak Academy of Sciences

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Slovaca

  • ISSN

    0139-9918

  • e-ISSN

  • Volume of the periodical

    66

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    8

  • Pages from-to

    335-342

  • UT code for WoS article

    000387220200002

  • EID of the result in the Scopus database