On Frink Ideals in Orthomodular Posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00342537" target="_blank" >RIV/68407700:21230/21:00342537 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11083-020-09537-0" target="_blank" >https://doi.org/10.1007/s11083-020-09537-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-020-09537-0" target="_blank" >10.1007/s11083-020-09537-0</a>
Alternative languages
Result language
angličtina
Original language name
On Frink Ideals in Orthomodular Posets
Original language description
Let S denote the class of orthomodular posets in which all maximal Frink ideals are selective. Let R (resp. T) be the class of orthomodular posets defined by the validity of the following implications: P is an element of R if the implication a, b is an element of P, a boolean AND b = 0 double right arrow a <= b' holds (resp., P is an element of T if the implication a. b = a boolean AND b' = 0 double right arrow a = 0 holds). In this note we prove the following slightly surprising result: R subset of S subset of T. Since orthomodular posets are often understood as quantum logics, the result might have certain bearing on quantum axiomatics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS
ISSN
0167-8094
e-ISSN
1572-9273
Volume of the periodical
38
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
245-249
UT code for WoS article
000555357700001
EID of the result in the Scopus database
2-s2.0-85088927197