Echo State Queueing Networks: A Combination of Reservoir Computing and Random Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311786" target="_blank" >RIV/68407700:21230/17:00311786 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/echo-state-queueing-networks-a-combination-of-reservoir-computing-and-random-neural-networks/B61D5741A5AD03BC3B6433BA139940D4" target="_blank" >https://www.cambridge.org/core/journals/probability-in-the-engineering-and-informational-sciences/article/echo-state-queueing-networks-a-combination-of-reservoir-computing-and-random-neural-networks/B61D5741A5AD03BC3B6433BA139940D4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0269964817000110" target="_blank" >10.1017/S0269964817000110</a>
Alternative languages
Result language
angličtina
Original language name
Echo State Queueing Networks: A Combination of Reservoir Computing and Random Neural Networks
Original language description
This paper deals with two ideas appeared during the last developing phase in Artificial Intelligence: Reservoir Computing (RC) and Random Neural Networks. Both have been very successful in many applications. We propose a new model belonging to the first class, taking the structure of the second for its dynamics. The new model is called Echo State Queuing Network. The paper positions the model in the global Machine Learning area, and provides examples of its use and performances. We show on largely used benchmarks that it is a very accurate tool, and we illustrate how it compares with standard RC models.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Probability in the Engineering and Informational Sciences
ISSN
0269-9648
e-ISSN
1469-8951
Volume of the periodical
31
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
457-476
UT code for WoS article
000411729100006
EID of the result in the Scopus database
2-s2.0-85019205684